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LETTER TO THE EDITOR 

Surfing instability on a viscous shallow fluid 

M Papoular 
Centre de Recherche sur les Trhs Basses Temptratures, CNRS, BP 166, AV des Martyrs, 
38042 Grenoble. France 

Received 3 September 1990 

Abstract. We argue that a viscous fluid layer, if sufficiently shallow, will deform under the 
drag exerted by a thin, rigid plate sliding upon it. The resulting gravity wave travels at the 
plate velocity. 

Consider a thin, light and rigid plate floating upon a horizontal layer of a viscous, 
heavier fluid. Let us ignore end effects by taking infinite dimensions in the horizontal 
plane: the only geometrical length is the layer thickness h. Set the plate into uniform 
motion at speed V. We ask: is there a characteristic depth h,-and a related characteristic 
velocity V,-marking the threshold of an instability behaviour in the fluid? 

It is natural to expect such an instability to take the form of a ‘shallow-water’ 
gravity wave accompanying the plate translation (figure 1). It is well known [l] that 
a long (wavelength A >>depth h )  gravity wave propagates, with no dispersion, at 
velocity: 

V=V@ A >> h (1) 
where g is gravity acceleration. This result implies a linearity condition: A << h on the 
amplitude A of the wave. We have taken the same symbol V for wave velocity and 
speed of plate since equality of these will favour build-up of the instability. For the 
sake of simplicity we henceforth assume this ‘resonance condition’ to be fulfilled. 

Figure 1 shows the instability to take the plate upwards over an extra height equal 
to the wave amplitude A. We consider the plate to be so light that the corresponding 
potential energy can be neglected. 

A more serious source of potential energy brought in along with the instability is 
the creation of afree surface. This is just given, per unit area, by ha, the corresponding 
increase in total surface energy. That is the price to be paid in order for the instability 
to build up and reduce the viscous dissipation as we shall see. And, as such, it may 
well entail metastable behaviour at onset of instability-but we shall not consider here 
this aspect of the problem. 

l h  
Figure 1. Scheme of the fluid-layer instability: gravity wave with amplitude A, wavelength 
and velocity V = m. 
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There are a number of conditions to be placed on the fluid viscosity 77. First, the 
gravity wave should not be heavily damped. For ordinary gravity waves, with frequency 
w =*, this takes on the simple form [l]: 

with p the fluid specific mass, and q = 2 r / A  the wavevector. For the centimetric or 
decimetric gravity waves we are interested in, this is obviously a very mild condition. 
Also, note that for these wavelengths we can ignore the capillary (ripplon) contribution: 

for typical values of surface tension U. 

A second condition on viscosity 77 is that, if we want to stay in a simple regime, 
the viscous penetration depth (at the wave frequency U )  should be small on the scale 
of the layer thickness: - 

6 = dz<< h. (4) 

With w = Vq = 10 s-’ ( q  = 2 r / A  = 0.1 cm-’, V = 100 cm s-I), p = 2 g cm-3 and = 0.1 
poise, we get 6 = 0.1 cm. So this, again, is not a very restrictive condition. Note that, 
given (4), (2) is automatically satisfied, in view of (1). 

Viscosity, on the other hand, should be large enough (within condition (4)) so that 
dissipation after the onset of instability is lower than before. This is our central point. 
It can be viewed as a form of the ‘principle’ of minimum entropy production (which 
is known to fail for systems driven too far away off equilibrium, but we have already 
insisted that A stay much smaller than h ) .  Let us now develop this point. 

Before instability onset, the energy dissipated per unit time and unit area is given 
by: 

This is the standard result for viscous Stokes flow (uniform shear gradient taking the 
velocity from V to zero over layer thickness h ) .  

To find the energy dissipated after onset is a slightly more complicated exercise. 
Now E is given by [ l ,  p 1001: 

U, being the amplitude of the velocity oscillation in the gravity wave. This formula, 
with its characteristic square-root group, results from the fact that the main source of 
viscous dissipation now resides in the narrow rotational-flow sublayer of width 6 
(equation 4) at the bottom of the fluid. The flow-velocity U which, at a given abscissa, 
is almost uniform along the depth of the fluid layer, obeys Euler’s equation: 

av a5 
ax -=-g- d f  ( 7 )  
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( 5 :  instantaneous vertical coordinate of free surface; we have neglected viscosity since 
the wave is not appreciably damped). Since w / q  = V, we may rewrite (7)  as 

v o V = g A  ( 8 )  

where A is the amplitude of our long gravity wave; recall that A<< h. Comparing with 
( l ) ,  we get: 

V O  A = h - .  
V (9) 

So, V :  the flow velocity in the wave has to be much smaller than the phase velocity 
(i.e. the plate velocity), if we are to stay in the linear, small amplitude regime. This is 
a somewhat delicate point since the no-slip condition must hold at the contact with 
the plate, as it does at the bottom wall of the vessel. Clearly, the ratio v o / V  (and, 
therefore, A/  h )  should have an optimal value, below which the drag exerted by the 
plate on the gravity wave is not efficient, and above which nonlinearities would 
prohibitively increase dissipation. This optimal value might depend on material para- 
meters such as 7 and h (and therefore, V=m), as well as the wavelength A. In this 
letter we shall limit ourselves to a simple, heuristic criterion: 

A U0 _-_ -  - v-o.l .  

(In fact, as we shall see in the next section, A must indeed be larger than the 

Inserting ( lo) ,  and ( l ) ,  in the dissipation condition ( 6 )  (Ea< E,,), gives: 
bending of the plate.) 

77Ah-5/2 > 10-4~p&. ( 1 1 )  
Take, as an example: h = 10 cm (so, V -  100 cm s- '  and A = 1 cm), 77 = 0.1 poise, 

p = 3 g ~ m - ~ .  The minimum unstable wavelength is then A = 100 cm. 
Besides (1 l ) ,  and the trivial long-wave condition A >> h, there is another inequality 

condition between h and A which must be satisfied in order for the instability to set 
in: the amplitude of the wave, A, must be larger than the bending amplitude of the plate 
(not represented on figure 1);  otherwise contact is maintained everywhere and there 
is no point for the instability to take place. We write therefore: 

where, following [2], we have expressed the bending B in terms of A, g, pp and 8 
(respectively, specific mass and Young modulus of the plate; p,g is the weight per 
unit volume of the plate). This formula implies the plate thickness to be much smaller 
than the bending B. So, now, the wavelength A must be smaller than h3'4 times a 
constant involving the material parameters pp and 8, and gravity. With h = 10 cm, 
pp = 1 g cm-3 and 8 = 10" dy cm-2 (a stiff plate), inequality (12) amounts to: A,,, - 
100 cm, just matching condition (1  1 )  (with the above choice of parameters). 

Conditions (11) and (12), when expressed on a graph ( A  against h )  delimit an 
instability region: see figure 2 (the milder condition (4) has not been represented on 
this figure). 

To conclude, we have described a 'surfing' instability for a thin, light and rigid 
plate sliding upon a shallow, viscous fluid layer. For every set of material parameters, 
there is, in the ( h ,  A )  plane, a limiting point (point C in figure 2) below which (i.e. 
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Figure 2. Instability region: lower, unhatched area. With material parameters chosen as 
in text, h, = 10 cm ( V, = 100 cm s-',  A = 1 cm) and A , =  100 cm. 

for smaller thicknesses h and shorter wavelengths A )  the instability is favoured. Point 
C moves upwards, to larger h and A, as the viscosity increases. We have mentioned, 
without detailed discussion, possible metastabilities associated with the creation of a 
free surface, and possibly more complicated wave-amplitude to layer-thickness ratios 
than given in (10). 

The intrinsic difficulty of the wind-wave problem is well known. The 'board-wave' 
instability, at least in its minimal version as presented here, seems to be understandable 
in simpler terms: roughly speaking, the board tends to create the wave in order to 
improve sliding efficiency. We realize that other, more elaborate treatments probably 
exist in the literature. We have bluntly left aside a number of 'realistic' parameters, 
likely to affect the problem to varying degrees: wetting, viscoelasticity, end effects, 
profile effects, etc. We think however that this instability, as we have described it, 
might show up in various problems in physical hydrodynamics or industrial flows. 
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